Сейчас на сайте
Сейчас на сайте 0 пользователей и 0 гостей.

Микросхемы класса А

Микросхемы памяти различаются по скорости доступа (70, 60, 50, 45 ns). Чипы, показавшие устойчивую работу на всех тестах, относятся к классу А (независимо от быстродействия), чипы с небольшими дефектами будут отнесены к классу С, а чипы имеющие значительные дефекты обычно уничтожаются.

Чипы класса А наиболее надежны и считаются чипами высшего качества. Они также являются наиболее дорогими, потому что обеспечивают устойчивую работу в любых условиях. Чипы класса С применяются в устройствах, не столь требовательных к системной памяти как современные компьютеры, например в пейджерах, калькуляторах и в другой бытовой технике. Некоторые производители дополнительно применяют другую классификацию для идентификации чипов.

Производители наносят на каждую микросхему маркировку, включающую название производителя, конфигурацию чипа, скорость доступа и дату производства. Эта маркировка наносится не на поверхность, а внедрена в пластмассовый корпус чипа. Далее на чип наносится защитное покрытие, придающее ему презентабельный вид. Кроме того, некоторые производители наносят на верхнюю часть микросхемы небольшую рельефную точку для обозначения первого вывода чипа и для идентификации перемаркировок, выполненных кустарно.

Выпускаются чипы различной емкости (измеряемой в Мегабитах - 1Мегабайт=8*1Мегабит), например 1 Мегабит (в этом контексте обозначение Mb - это именно Мегабит), 4Mb, 16Mb, 64Mb и недавно появившиеся 256Mb. Каждый чип содержит ячейки, в которых может хранится от 1 до 16 бит данных. Например, 16Mb-чип может быть сконфигурирован как 4Mbx4, 2Mbx8 или 1Mbx16, но в любом случае его общая емкость 16Mb. Таким образом, первое число маркировки у некоторых производителей указывает на общее количество ячеек в чипе, а второе - на число бит в ячейке. Число бит на ячейку также влияет на то, сколько бит передается одновременно при обращении к ней.

Ячейки в чипе расположены подобно двумерному массиву, доступ к ним осуществляется указанием номеров колонки и ряда. Каждая колонка содержит дополнительные схемы для усиления сигнала, выбора и перезарядки. Во время операции чтения, каждый выбранный бит посылается на соответствующий усилитель, после чего он попадает в линию ввода/вывода. Во время операции записи все происходит с точностью до наоборот. Так как ячейки DRAM быстро теряют данные, хранимые в них, они должны регулярно обновляться. Это называется refresh, а число рядов, обновляемых за один цикл - refresh rate (частота регенерации). Чаще всего используются refresh rates равные 2K и 4K. Чипы, имеющие частоту регенерации 2К, могут обновлять большее количество ячеек за один раз, чем 4К и завершать процесс регенерации быстрее. Поэтому чипы с частотой регенерации 2К потребляют меньшую мощность. При выполнении операции чтения, регенерация выполняется автоматически, полученные на усилителе сигнала данные тут же записываются обратно. Этот алгоритм позволяет уменьшить число требуемых регенераций и увеличить быстродействие.

Несколько управляющих линий используется для указания, когда осуществляется доступ к ряду и колонке, к какому адресу осуществляется доступ и когда данные должны быть посланы или получены. Эти линии называются RAS и CAS (Row Address Select - указатель адреса ряда и Column Address Select - указатель адреса колонки), адресный буфер и DOUT/DIN (Data Out и Data In). Линии RAS и CAS указывают, когда осуществляется доступ к ряду или колонке. Адресный буфер содержит адрес необходимого ряда/колонки, к которым осуществляется доступ и линии DOUT/DIN указывают направление передачи данных.

Скорость работы чипа асинхронной памяти измеряется в наносекундах (ns). Эта скорость указывает, насколько быстро данные становятся доступными с момента получения сигнала от RAS. Сейчас основные скорости микросхем, присутствующих на рынке - 70, 60, 50 и 45ns. Синхронная память (SDRAM) использует внешнюю частоту материнской платы для циклов ожидания, и поэтому ее скорость измеряется в MHz, а не в наносекундах.