Сейчас на сайте
Сейчас на сайте 0 пользователей и 0 гостей.

OLAP = многомерное представление = Куб

Особое значение простота доступа к данным играет для системных аналитиков, т.к. они особые потребители корпоративной информации. Задача аналитика - находить закономерности в больших массивах данных.

Одиночные факты в БД могут заинтересовать предметного специалиста, в компетенции которого входит поиск конкретной информации. Аналитику одной записи недостаточно -ему, к примеру, могут понадобиться все аналогичные транзакции, например, за месяц, год. Заодно аналитик отбрасывает ненужные ему подробности, и потребляет данные, которые требуются для работы, обязательно содержащие числовые значения - это обусловлено самой сущностью его деятельности. Итак, аналитику нужно много данных, которые являются выборочными, а также носят характер "набор атрибутов - число". Задачей аналитика является выявление стойких взаимосвязей между атрибутами и числовыми параметрами.

В основе OLAP лежит идея многомерной модели данных, в которой на смену таким понятиям как отношения и сущности приходят понятия измерений и кубов данных. Технология OLAP, которую называют также интерактивной (диалоговой) аналитической обработкой, дает возможность на основе многомерной (гиперкубической) модели данных (в отличие от плоской реляционной модели данных) моделировать реальные структуры и связи, которые есть исключительно важными для аналитических систем. Она предназначенная для создания мульти параметрических моделей с целью более адекватно отбивать реальные процессы. Технология OLAP разрешает быстро изменять взгляды на данные в зависимости от выбранных параметров и обеспечить лицу, которое принимает решения, полную картину анализируемых ситуаций.

Измерение

С точки зрения анализа каждый анализируемый факт удобно рассматривать как функцию от его характеристик. Например, производство изделия есть функция от материалов, станков, рабочих, инженеров, технологов, управленцев, возможно, еще каких-то существенных параметров. Параметры такого типа носят название измерений. Реляционная база данных, содержащая всю информацию о предметной области, превращается в ХД в терминах OLAP, а процесс создания структуры аналитической системы сводится к определению измерений и организации витрин данных.

Многомерный анализ

Одновременный анализ по нескольким измерениям определяется как многомерный анализ. По измерениям (осям) в многомерной модели откладывают основные факторы (атрибуты), влияющие на деятельность предприятия, т.е. то, по чему ведется анализ. В качестве одного из измерений используется время, иными могут быть, например, изделия, филиалы компании и т.п. Так получают многомерный куб (гиперкуб, метакуб, куб фактов), который затем наполняется показателями деятельности предприятия (цены, продажи, план, прибыли, убытки и т.п.). При том гиперкуб является концептуальной логической моделью организации данных, а не физической реализацией их хранения, поскольку храниться такие данные могут и в реляционных таблицах.

Гиперкуб (Hypercube)

На самом деле, с точки зрения строгой математики кубом такой массив будет далеко не всегда: у на-стоящего куба количество элементов во всех измерениях должно быть одинаковым, а у кубов OLAP такого ограничения нет. Тем не менее, несмотря на эти детали, термин гиперкуб (метакуб) ввиду своей краткости и образности стал общепринятым. Гиперкуб (Hypercube) – это умозрительная многомерная конструкция в многомерном пространстве, образованном плоскостями данных, которые важны для деятельности предприятия. При этом сама OLAP-система выступает именно в роли гиперкуба, способного накапливать в себе всю информацию, интересующую руководителя. В качестве ребер (осей) куба в таком случае выступают различные данные.

Пример.

Товар, цена производимого или конкурентного товара, регион, тип покупателя компании-участники производственного цикла, подрядчики при организации услуг, объемы продаж, география самой компании.