Data Mining - DMData Mining (DM) — это технология поддержки процесса принятия решений, основанная на выявления скрытых закономерностей и систематических взаимосвязей между переменными внутри больших массивов информации, которые затем можно применить к новым совокупностям данных. При этом накопленные сведения автоматически обобщаются до информации, которая может быть охарактеризована как знания. Обнаружение новых знаний можно использовать для повышения эффективности бизнеса. В связи с совершенствованием технологий записи и хранения данных на людей обрушились колоссальные потоки информационной руды в самых различных областях. Деятельность любого предприятия (коммерческого, производственного, медицинского, научного и т.д.) теперь сопровождается регистрацией и записью всех подробностей его деятельности. Многие компании годами накапливают важную бизнес-информацию, надеясь, что она поможет им в принятии решений. Корпоративная база данных любого современного предприятия обычно содержит набор таблиц, хранящих записи о тех или иных фактах либо объектах (например, о товарах, их продажах, клиентах, счетах). Как правило, каждая запись в подобной таблице описывает какой-то конкретный объект или факт. Например, запись в таблице продаж отражает тот факт, что такой-то товар продан такому-то клиенту тогда-то таким-то менеджером, и по большому счету ничего, кроме этих сведений, не содержит. Пример.
Однако совокупность большого количества таких записей, накопленных за несколько лет, может стать источником дополнительной, гораздо более ценной информации, которую нельзя получить на основе одной конкретной записи, а именно — сведений о закономерностях, тенденциях или взаимозависимостях между какими-либо данными. Пример.
Подобного рода информация обычно используется при прогнозировании, стратегическом планировании, анализе рисков, и ценность ее для предприятия очень высока, поэтому процесс ее поиска и получил название Data Mining (mining по-английски означает «добыча полезных ископаемых», а поиск закономерностей в огромном наборе фактических данных действительно сродни этому). Синонимами DM можно считать следующее. Синонимы Data Mining - DM
Термин Data MiningТермин Data Mining обозначает не столько конкретную технологию, сколько сам процесс поиска корреляций, тенденций, взаимосвязей и закономерностей посредством различных математических и статистических алгоритмов: кластеризации, создания субвыборок, регрессионного и корреляционного анализа. Цель этого поиска — представить данные в виде, четко отражающем бизнес-процессы, а также построить модель, при помощи которой можно прогнозировать процессы, критичные для планирования бизнеса (например, динамику спроса на те или иные товары или услуги либо зависимость их приобретения от каких-то характеристик потребителя). Пример.
В отличие от оперативной аналитической обработки данных (OLAP) в DM задача формулировки гипотез и выявления необычных (unexpected) алгоритмов переложено с человека на компьютер. Если при статистическом анализе или при применении OLAP обычно формулируются вопросы типа «Каково среднее число неоплаченных счетов заказчиками данной услуги?», то применение DM , как правило, то подразумевает ответы на вопросы типа «Существует ли типичная категория клиентов, не оплачивающих счета?». При этом именно ответ на второй вопрос нередко обеспечивает более нетривиальный подход к маркетинговой политике и к организации работы с клиентами. Примеры заданий на такой поиск при использовании DM - Data Mining приведены в таблице. Примеры формулировок задач при использовании методов OLAP и DM - Data Mining
Важное положение DM - Data MiningВажное положение DM — нетривиальность (нестандартность и неочевидность) разыскиваемых алгоритмов (шаблонов). Это означает, что найденные шаблоны должны отражать неочевидные, неожиданные (unexpected) регулярности в данных, составляющие так называемые скрытые знания (hidden knowledge). Иными словами, средства DM отличаются от инструментов статистической обработки данных и средств OLAP тем, что вместо проверки заранее предполагаемых пользователями взаимозависимостей они на основании имеющихся данных способны находить такие взаимозависимости самостоятельно и строить гипотезы об их характере. Применение DM - Data MiningСледует отметить, что применение средств DM не исключает использования статистических инструментов и OLAP-средств, поскольку результаты обработки данных с помощью последних, как правило, способствуют лучшему пониманию характера закономерностей, которые следует искать. Применение DM оправданно при наличии достаточно большого количества данных, в идеале — содержащихся в корректно спроектированном ХД (собственно, сами ХД обычно создаются для решения задач анализа и прогнозирования, связанных с поддержкой принятия решений). Данные в хранилище представляют собой пополняемый набор, единый для всего предприятия и позволяющий восстановить картину его деятельности на любой момент времени, а структура данных хранилища проектируется таким образом, чтобы выполнение запросов к нему осуществлялось максимально эффективно. Впрочем, существуют средства DM , способные выполнять поиск закономерностей, корреляций и тенденций не только в хранилищах данных, но и в OLAP-кубах, то есть в наборах предварительно обработанных статистических данных. Эксперты считают, что в ближайшее десятилетие DM станет одним из перспективных направлений разработки ПО. За счет выявления содержательной структуры в собранной информации и ее анализа в режиме реального времени данная технология станет ключевым методом разработки «индивидуальной Сети», приспособленной под конкретные нужды каждого пользователя. |